
POSIX Threads Quick Guide
v 0.1.1

Adam Grossman <adamtg@metashadow.com>

Definitions

Thread safe/re-entrant
NOTE: Every re-entrant function is thread safe, but not every thread-safe function is re-entrant.

Concept Description

thread-safe shared data is safe. A thread-safe function must:
• if it has shared resources, it is protected through locks
• must not have any side effects

re-entrant can safely be entered by multiple threads. A re-entrant function must:
• not have non-constant static or global variables can be used
• not return any pointers pointing to the stack
• can only use data supplied by the caller to the function
• not call any non re-entrant functions

Thread Detach State

Concept Description

joinable Joinable threads can be waited on. The call to wait on the thread will wait until the joined thread
terminates. If a joinable thread is not waited on, the resources will not be relinquished.

detached The resources of the thread are returned immediately to system and the thread can't be waited on,
as it can be with a joinable thread.

Creating Threads

Thread Creation
Asynchronously creates and starts a thread.

int pthread_create(pthread_t *tid, const pthread_attr_t *attr, void
*(*start_routine)(void*), void *arg);

Field Purpose Value

int (return value) return value of call 0: no error
EAGAIN: not enough resources to create
thread, or thread limit
(PTHREAD_THREADS_MAX) is reached
EINVAL: attr is invalid
EPERM: caller does not have
permissions to create threads

pthread_t *tid returns the process unique ID of the pointer to pthread_t variable

created thread.

const pthread_attr_t *attr sets the various attributes for the thread NULL: set defaults attributes.
See section Appendix A: Thread
Attributes for details

void *(*thread_function)
(void*)

the function that will run as the thread a function that returns a void pointer,
and it's single argument is a void
pointer

void *arg pointer to the data that is the argument
to thread_function

void pointer

Thread Control

Waiting for a thread to exit
pthread_join suspends the calling thread until the thread that is being waited on terminates. The thread that is ebing
waited on must be a joinable thread, or pthread_join will exit with an error.

void pthread_join(pthread_t thread_id, void **value_ptr)

Field Purpose Value

int (return value) return value 0: successful
EINVAL: specified thread is not joinable
ESRCH: invalid thread id
EDEADLK: deadlock was detected or
thread id is the thread id of the calling
thread

pthread_t thread_id id of thread to be waited on Any thread id that is in a JOINABLE
state

void **value_ptr allows the exiting thread to pass exit
data

pointer value of argument passed via
the pthread_exit

Exit Thread
Exits the currently running thread. If there is a pthread_join waiting on the thread, control is returned to the threading
making the pthread_join call. Before the thread actually exits, it pops off the functions on the cleanup stack (see
Thread Cleanup)

void pthread_exit(void *value)

Field Purpose Value

void *value Return value to the pthread_join call. This
value is only used when the exiting thread is
waited upon by the pthread_join call. If
value points to resources within the exiting
threads private resource (i.e. thread stack), the
pointer will be undefined.

A pointer to any globally available memory
location

Sending Signal to a Thread
Sends a signal to a specific thread

int pthread_kill(pthread_t thread_id, int sig)

Field Purpose Value

int (return value) return value 0: successful
ESRCH: thread id is invalid
EINVAL: invalid signal number

pthread_t thread_id thread to send signal to valid thread

int sig signal to send to thread valid signal number

Detach a running thread
If a thread is currently running, it can be set to a detach state. It will not cause the thread to terminate.

int pthread_detach(pthread_t thread_id)

Field Purpose Value

int (return value) return value 0: successful
EINVAL: thread is not a joinable thread
ESRCH: invalid thread

pthread_t thread_id id of thread to be detached valid thread id

Get Thread ID
Get the currently running thread's id

pthread_t pthread_detach()

Field Purpose Value

pthread_t return value The current running thread's id. This
function does not return an error value.

Thread Cancellation
Thread cancellation allows a controlled termination of threads. The cancellation request is sent to the thread, and the thread
decides how to handle the request. Before the thread actually exits, it pops off the functions on the cleanup stack (see
Thread Cleanup)

There are two states:

State Description

Enable Cancellation requests are sent to the threads. Any held requests will be immediately sent.

Disable The cancellation request is held, and not actually sent to the target thread.

If the state is Enable, there are two types of cancellations

Type Description

Deferred Cancellation is held off until a cancellation point is reached

Asynchronous Cancellation can happen at anytime

The default state is cancellation Enable and the default type is Deferred

Setting the cancellation states
The call which actually cancels a thread is asynchronous and does not wait for the thread to terminate.

 int pthread_setcancelstate(int state, int *prev_state)

Field Purpose Value

int (return value) return value 0: successful
EINVAL: state is not a valid state

int state the cancel state to set the thread PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DISABLE

int *prev_state the previous cancel state of the thread PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DISABLE

Setting the cancellation type

 int pthread_setcanceltype(int type, int *prev_type)

Field Purpose Value

int (return value) return value 0: successful
EINVAL: state is not a valid state

int type the cancel type to set the thread PTHREAD_CANCEL_DEFERRED
PTHREAD_CANCEL_ASYNCHRONOUS

int *prev_type the previous cancel type of the thread PTHREAD_CANCEL_DEFERRED
PTHREAD_CANCEL_ASYNCHRONOUS

Sending a cancellation to a thread
This allows a thread to request a thread to cancel. This is a asynchronous call, so it does not wait for the destination thread
to actual cancel.

int pthread_cancel(pthread_t thread_id)

Field Purpose Value

int (return value) return value 0: successful
ESRCH: invalid thread

pthread_t thread_id id of the thread the cancel is sent to any valid thread id

Deferred Cancellation
When a thread is in deferred cancellation state, the thread terminates only at determined points. Certain functions are
considered cancellation points [list needs to be added to an appendix]. A cancellation point can also explicit be set by
calling pthread_testcancel.

void pthread_testcancel()

There are no return values or arguments. When the function is called, and there is a pending cancel, the thread will be
canceled, otherwise it continues processing as if nothing has happened.

Asynchronous Cancellation
There is no safety checks, and the thread can be canceled at anytime.

Thread Cleanup
Each thread has a stack where the callbacks for thread cleanup are placed. When a thread exits due to cancellation or a call
to pthread_exit, it pops off each and runs each call. The cleanup stack is not called when a thread terminates due to a
call to return. The cleanup calls can explicitly be ran by manually popping the calls off the stack.

NOTE: pthread_cleanup_push and pthread_cleanup_pop are sometime implemented as macros, and need to be
used in matching pairs in the nested level.

Push Function on the Stack

 void pthread_cleanup_push(void (*func)(void *), void *arg)

Field Purpose Value

void (*func)(void *) pointer to a callback function pointer to a function that returns void
and has a void pointer as it's only
argument

void *arg pointer to data which will be the
argument to the callback

void pointer

Pop Function off the Stack

 void pthread_cleanup_pop(int execute)

Field Purpose Value

int execute controls whether the popped callback
will be executed or not

0: pop the callback, but do not actually
run it
>0: pop and run the callback

Synchronization
Mutex
Allows for synchronization between threads. Only one thread can own the lock, and the other threads that are trying to
obtain the lock block until the thread that owns the lock unlocks the mutex. When the lock is unlocked, and other threads
are waiting on the mutec, the scheduling policy dictates which waiting thread gets the mutex.

Creating
Initializing an already initialized mutex will either produce an error, or is undefined. This behavior is system dependent.

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)

Field Purpose Value

int (return value) return value 0: successful
EAGAIN: out resources (other than memory)
to create another mutex
ENOMEM: out of memory
EPERM: insufficient privileges
EBUSY: trying to reinitialize an already
initialized mutex (this error is system

dependent)
EINVAL: attr is invalid

pthread_mutex_t *mutex mutex that is to be initialized pointer to pthread_mutex_t

pthread_mutexattr_t *attr mutex attributes NULL: use defaults
see Appending B: Mutex Attributes for
attributes details

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

This is a macro to initialize a statically allocated mutex with default attributes.

Destroying
This will turn the mutex into an uninitialized mutex. It does not release any memory/resources. Attempting to destroy a
locked mutex is undefined or returns an error. This behavior is system dependent.
int pthread_mutex_destroy(pthread_mutex_t *mutex)

Field Purpose Value/Description

int (return value) return value 0: success
EBUSY: mutex is locked or being waited
on (this error is system dependent)
EINVAL: mutex is invalid (this error is
system dependent)

pthread_mutex_t *mutex mutex that is to be initialized pointer to pthread_mutex_t

Locking (Blocking)
Tries to lock the mutex. If the mutex is already locked, the call waits until the mutex is unlocked and available to the calling
thread.

int pthread_mutex_lock(pthread_mutex_t *mutex)

Field Purpose Value/Description

int (return value) return value 0: success
EINVAL: if protocol type is
PTHREAD_PRIO_PROTECT and the calling threads
priority is higher then the mutex's priority ceiling
EINVAL: invalid mutex
EAGAIN: if type is PTHREAD_MUTEX_RECURSIVE
and max number of recursive locks has been
exceeded
EDEADLK: if type is
PTHREAD_MUTEX_ERRORCHECK and the thread
already owns the lock for the mutex

pthread_mutex_t *mutex mutex that is to be locked pointer to pthread_mutex_t

Locking (Non-Blocking)
Does not block if it can not lock the mutex

int pthread_mutex_trylock(pthread_mutex_t *mutex)

Field Purpose Value/Description

int (return value) return value 0: success
EINVAL: if protocol type is
PTHREAD_PRIO_PROTECT and the calling threads
priority is higher then the mutex's priority ceiling
EBUSY: can not be locked because it is already
locked
EINVAL: invalid mutex
EAGAIN: if type is PTHREAD_MUTEX_RECURSIVE
and max number of recursive locks has been
exceeded

pthread_mutex_t *mutex mutex that is to be locked pointer to pthread_mutex_t

Unlock
Releases the lock and allows another thread to obtain it.

int pthread_mutex_unlock(pthread_mutex_t *mutex)

Field Purpose Value/Description

int (return value) return value 0: success
EINVAL: invalid mutex
EAGAIN: if type is PTHREAD_MUTEX_RECURSIVE
and max number of recursive locks has been
exceeded
EAPERM: thread does not own the mutex

pthread_mutex_t *mutex mutex that is to be unlock pointer to pthread_mutex_t

TBD
condition variables
threads and signals

stack management

posix keys?
posix scheduling?

Appendix A
Thread Attributes
Thread attributes are created by using different calls to set a pthread_attr_t structure. See section Getting/Setting
Attributes for defaults attribute settings

Initializing/Destroying Thread Attributes

 int pthread_attr_init(pthread_attr_t *attr);

Initializes the attribute structure, and sets all the fields to the default values. It can used in multiple calls to
pthread_create.

Field Purpose Value/Description

int (return value) return value 0: success
ENOMEM: insufficient memory to
initialize structure

pthread_attr_t *attr structure to be initializes pointer to pthread_attr_t structure.

The default values are: (the description of each field/values are explained under Get/Set Attribute Functions section) :

Description Default Value

Detach State PTHREAD_CREATE_JOINABLE

Scheduling Policy SCHED_OTHER

Schedule Parameter (Priority) 0

Inherit Schedule PTHREAD_EXPLICIT_SCHED

Scope PTHREAD_SCOPE_SYSTEM

Stack Address N/A

Stack Size PTHREAD_STACK_MIN

Guard Size 1 page. (ignored if user managed stack)

 int pthread_attr_destroy(pthread_attr_t *attr);

Sets the structure value to an invalid value. Does not set the pointer to an invalid value, just the values of the structure to
invalid values.

Field Purpose Value/Description

int (return value) return value 0: success
ENOMEM: insufficient memory to
initialize structure

pthread_attr_t *attr structure to be made invalid pointer to pthread_attr_t structure.

Get/Set Attribute Functions
Each attribute has it's own get/set call. Each call is pretty much the same, so only the meaning of the options will be
described.

Default attributes are marked with an asterisk (*).

Detach State

 int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

 int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);

Attribute Description

PTHREAD_CREATE_DETACHED* Detached thread

PTHREAD_CREATE_JOINABLE Joinable thread

Guardsize

NOTE: Guardsize attribute is ignored for user managed thread stacks

 int pthread_attr_setgaurdsize(pthread_attr_t *attr, size_t gaurdsize);
 int pthread_attr_getgaurdsize(const pthread_attr_t *attr, size_t *gaurdsize);

Attribute Description

size in bytes (DEFAULT: 1 page size*) Guard size is the number of bytes used for to protect against
stack overflows.

Schedule Parameter

 int pthread_attr_setschedparam(pthread_attr_t *attr, struct sched_param *schedparam);
 int pthread_attr_getschedparam(const pthread_attr_t *attr, const struct sched_param
*schedparam);

Attribute Description

Scheduling priority parameters structure Look up “struct sched_param” for structure details

Schedule Inheritance

 int pthread_attr_setinheritsched(pthread_attr_t *attr, int schedule);
 int pthread_attr_getinheritsched(const pthread_attr_t *attr, int *schedule);

Attribute Description

PTHREAD_EXPLICIT_SCHED* Get scheduling parameters from the attribute structure.

PTHREAD_INHERIT_SCHED Inherit scheduling from creating thread. The schedule
parameter attribute will be ignored.

Schedule Policy

 int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
 int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy);

Attribute Description

SCHED_OTHER* Implementation specific

SCHED_FIFO First in, first out

SCHED_RR Round Robin

Stack Address

 int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddress);
 int pthread_attr_getstackaddr(const pthread_attr_t *attr, void **stackaddress);

Attribute Description

Memory location Pointer to the memory location that will be used as the
threads stack.

Stack Size

 int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);
 int pthread_attr_setstacksize(const pthread_attr_t *attr, size_t *stacksize);

Attribute Description

 Stack size minimum stack size for the thread (default:
PTHREAD_STACK_MIN)

Appendix B
Mutex Attributes

Initialize Attributes Structure
The structure is initialized to default values

int pthread_mutexattr_init(pthread_mutexattr_t *attr)

Field Purpose Value/Description

int (return value) return value 0: success
ENOMEM: insufficient memory to
initialize structure

pthread_mutexattr_t *attr structure to be initializes pointer to pthread_mutexattr_t
structure.

The default values are: (the description of each field/values are explained under Get/Set Attribute Functions section) :

Description Default Value

Shared PTHREAD_PROCESS_PRIVATE

Type PTHREAD_MUTEX_DEFAULT

Protocol PTHREAD_PRIO_NONE

Priority Ceiling implementation specific

Get/Set Attribute Functions
Each attribute has it's own get/set call. Each call is pretty much the same, so only the meaning of the options will be
described.

Default attributes are marked with an asterisk (*).

Shared
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int shared)
int pthread_mutexattr_getpshared(const pthread_mutexattr_t *attr, int *shared)

Attribute Description

PTHREAD_PROCESS_PRIVATE * Only threads in the same process can operate an the mutex

PTHREAD_PROCESS_SHARED Any process that has access to the mutex's memory can
operate on the mutex

Type
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)

Attribute Description

PTHREAD_MUTEX_DEFAULT * Attempts to relock a locked mutex in the same thread is
undefined. Unlocking the mutex by thread other than the
thread that locked is undefined. Unlocking an unlocked
thread is undefined.

PTHREAD_MUTEX_NORMAL Attempts to relock a locked mutex in the same thread will
create a deadlock. Unlocking the mutex by thread other than
the thread that locked will return an error. Unlocking an
unlocked thread will return an error.

PTHREAD_MUTEX_ERRORCHECK Attempts to relock a locked mutex in the same thread will
return an error. Unlocking the mutex by thread other than the
thread that locked will return an error. Unlocking an
unlocked thread will return an error.

PTHREAD_MUTEX_RECURSIVE Allows the same thread to relock a locked thread, but it
requires the same number of unlocks to completely unlock the
mutex. Unlocking the mutex by thread other than the thread
that locked will return an error. Unlocking an unlocked
thread will return an error.

Protocol
Allows for the priority of the thread be affected when it gets the mutex

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr, int protocol)
int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int *protocol)

Attribute Description

PTHREAD_PRIO_NONE* Priorities are not affected

PTHREAD_PRIO_INHERIT If the thread is blocking other threads that are waiting for the
mutex, and those threads have a higher priority, the thread
with the mutex inherits the highest priority of the blocked
threads

PTHREAD_PRIO_PROTECT If the thread holds several mutexes, the thread will get the
highest priority ceiling for those mutexes (regardless of the
protocol the others are set to). Priority Ceiling attribute
must be set.

Priority Ceiling
int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int
priority_ceiling)
int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int
*priority_ceiling)

Attribute Description

integer the minimum priority the thread will run in while the thread
has the mutex. To avoid priority inversion, the priority will be
set the highest priority of all threads that may lock the mutex.

Destroy
Unitializes an attribute structure

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)

Field Purpose Value/Description

int (return value) return value 0: success
EINVAL: invalid attribute

pthread_mutexattr_t *attr structure to be initializes pointer to pthread_mutexattr_t
structure.

FAQ

q1: What happens to the threads when the calling thread exits?

a1: If the calling thread exits by calling exit, or exit due to an uncaught signal, the threads will also terminate, and will not
pop off any cleanup routines. if the calling thread exits (even it is the the main processes itself) by calling pthread_exit,
the threads will continue to run.

License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States
License.

Document Changes

Date Version Name Change

10/24/09 0.01 Adam Grossman
<adamtg@metashadow.com>

Initial Release

11/17/09 0.05 Adam Grossman
<adamtg@metashadow.com>

Added in the main thread
creation/attributes functions

11/25/09 0.1 Adam Grossman
<adamtg@metashadow.com>

Added in mutex
Reformatted
First Release

12/06/09 0.1.1 Adam Grossman
<adamtg@metashadow.com>

Added in notes in the clean-
up routines.
Added in FAQ sections

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
mailto:ag@metashadow.com
mailto:ag@metashadow.com
mailto:ag@metashadow.com
mailto:ag@metashadow.com

