
C++ Quick Guide
v 0.91

Adam Grossman <adamtg@metashadow.com>

Class Definition

class <class name> [: <access level1> <base class name>]
{
 [<access level2>:]

[explicit] <class name>([<arguments>]) [: <variable name>(<value>)>,];
//constructor

[friend <class name>|static] <type> <variable name>; // variable
[friend <class name>|static|virtual] <return type> <method name>([arguments])

// method - inline
{

// function body
}

[friend <class name>|static|virtual] <return type> <method
 name>([<arguments>])[=0]; // method - prototype

[friend <class name>;]
[virtual] ~<class name>(); //destructor

<type> operator<operator>([argument]);
};

// defining a method if only prototype is declared in class
<class name>::<method name>([<arguments>])
{

// function body
}

class declaration
Field Purpose Value/Description

<class name> name of class any legal variable name

<access level1> controls access level of base
class to anything the uses
derived class

public: access levels from base class remain the same
protected: public members become protected
private: public and protected members become private

class definition
access

Field Purpose Value/Description

<access level2> controls member access for
anything using class

There can be as many access level sections in the class as needed,
even the multiple sections of the same access level. The deffault
level is private.

public: unrestricted access
protected: only accessible by derived class
private: only accessible by the class itself

constructors
NOTE: A base class's constructor is always called before the derived class's constructor. If the base class needs an

arguments to the constructor, include the parent class constructor in the initialization list
NOTE: If the constructor's single argument is of the same type as the class, and the constructor uses that object to make a
copy of it for the newly created object, it's called a copy constructor. If the single argument is of a type other then the class
itself, and it is used to convert the argument type to a new object of the constructor's class type, it's called a conversion
constructor.

Field Purpose Value/Description

explicit forbids the constructor to be
used for an implicit
conversion

In order to use the constructor, it must be explicitly called. This
avoids inadvertently copy constructors to be called.

 <class name> Name of constructor constructors always are the same name as the class

<arguments> arguments follows standards C rules, except for one exception. In the method
declaration, a default value can be given. The default argument
must always start at the first argument, and move right without any
non-default arguments between defaulted arguments.

<variable
name>(<value>)>

Initialization list Initializes member variables outside of the constructor body. These
can only initialize object members, not class members (members
declared as static)

member variable declaration (see “friend” section on the “friend” option):

Field Purpose Value/Description

static makes member variable a
class member

Class does not need to instantiated to be accessed. This would be
equivalent to creating a global variable within a namespace named
<class name>. The same variable is accessed, whether it is
referenced from an object or not.

<type> <variable
name>

variable declaration follows standard C rules

member method declaration (see “friend” section on the “friend” option):

Field Purpose Value/Description

static makes method a class
method

Class does not need to instantiated to be accessed, therefore there
can not be a “this” variable sent for methods. This would be
equivalent to creating a global within a namespace named <class
name>. The same function is accessed, whether it is referenced
from an object or not.

virtual Allows polymorphism If a pointer of the type base class points to a derived class, the
derived class method will be called. In other words, it's not the
pointer type which determines the class, but the class the pointer is
actually pointing to. If the base class is methods are declared
virtual, the derived classes do not to declare it's methods as virtual.
As long as the base is declared virtual, those members are
considered virtual all the way down the hierarchy.

<return type>
<method name>

method fingerprint follows standard C rules

<arguments> arguments follows standards C rules, except for one exception. In the method
declaration, a default value can be given. The default argument
must always start at the first argument, and move right without any
non-default arguments between defaulted arguments.

=0 this makes the function a
pure virtual function (must
be used with virtual)

That means the method is just declared, but not defined. A class
with even single pure virtual function can not be instantiated and
must have a derived class which defines the every pure virtual

function

friend

Field Purpose Value/Description

friend <class
name> [<member>]

allows outside classes access
to class

gives the class name <class name> access to the member,
regardless of it's access level (if the member is public, it has no
effect). If no member is given, the <class name> has access to all
of the class's private and protected members

operator overloading
This allows operators to be overloaded to common operators (+,-,[], etc) can be used in a class, hopefully to make the class
more intuitive for the user of the class. For binary operators, it's the left side operand which makes the call. For unary
operators, the object that makes the call is based on the operator type.

Field Purpose Value/Description

<type> the result of the operator Based on the operator. if the operator is '=', a bool type would be
expected, if the type is '+', the type would be the operator's class to
be returned

<operator> operator being overloaded Any legal c++ operator, including '+','-','[]', etc. NOTE: Operators
like '+' and '+=' are considered different operators. See below for
prefix/postfix operator notes.

([argument]) For binary operators, the
right side operand is the
argument. For unary
operators, it's determined by
the operators purpose.

Any class or built-in type.

Prefix/Postfix operator overloading
In order to detemine whether the pre- or post- fix operator is used, the following convention is used

<type>& operator++(); //prefix
{
 // increment whatever needs to incremented
 return *this;
}

<type> operator++(int); //postfix
{

<type> temp_obj = *this;
// increment whatever needs to be incremented in this class

return temp_obj;
}

destructor
NOTE: destructors are called from the derived class first, then the base class

Field Purpose Value/Description

virtual allows polymorphism behaves just like a virtual method,
except the base class destructor will be
called. But if the destructor is not

declared virtual, and the class is
destroyed via a pointer to the base
class, the derived class's destructor will
not be called.

~<class name>() cleans up class destructors are always the same name
as the class and never has any
arguments

Method overloading/overriding
Methods can either can either be overloaded (used for methods with common name in the same class) or overridden (used in
inheritance). Overloading/overriding is based the methods signature, which is the methods name and arguments. The return
value is not part of the methods signature.

Overloading Methods in the same class share the same name, but have different arguments.

Overridding Method has the same signature has a method in it's base class. The method in the derived class
will be called. If the base call and derived class have the same name, but different arguments, it
is functionally similar to having overloaded methods in the derived class

iostream

stdin. stdout, stderr
writing to stdout/stderr stream:

#include <iostream>

std::[cout|stderr] << <stuff output>| std::endl [<< <stuff to ouput>| std::endl];

Field Purpose Value/Description

std::[cout|cerr] stream object for stdout and stderr ostream (no nead to instatiate cout or cerr objects)

<< “pushes” stream to the object overloaded bit-wise operator

stuff output Data to be outputted This can be any type of value which supports output, such
as built-in types, strings, etc.

std::endl output manipulator EOL and flush

cin
read in data from stdin

#include <iostream>

std::cin >> <variable>;

NOTE: std::cin's return value evaluates to false in two situations. It read an EOF or the incoming stream contains date
that is not a legal value for variable.

Field Purpose Value/Description

std::cin stream object for stdin ostream (no nead to instatiate cout or cerr objects)

>> “pushes” stream to the variable overloaded bit-wise operator

variable variable to hold incoming stream the data in the stream, as long as it is of a compatible type
(integer values being read in for an int variable, etc.)

File I/O
There are three file stream objects

fstream allows reading and writing to a file

ifstream allows just reading from a file

ofstream allows just writing to a file

All three basically behave the same, just and are more restrictive. This allows a stream object to be passed to a method
while having compile time checking to make sure the right stream direction object is being passed.

opening a file
NOTE: The arguments in File.open can also be used for the *fstream constructor.
NOTE: Only certain modes are valid for certain file stream objects

#include <fstream>

[fstream|ifstream|ofstream] File;

File.open(char *filename, int mode)

Field Purpose Value/Description

[stream|ifstream|
ofstream]

stream object a file stream object

FILE.open method for opening a file

char *filename file to open standard C string

int mode modes to open file Defaults modes:
fstream: ios::in | ios::out
ifstream: ios::in
ofstream: ios::out

See table below for modes

Mode Description

ios::in Open file to read

ios::out Open file to write

ios::app All the data you write, is put at the end
of the file. It calls ios::out

ios::ate All the date you write, is put at the end
of the file. It does not call ios::out

ios::trunc Deletes all previous content in the file.
(empties the file)

ios::binary Opens the file in binary mode.

checking for error after opening files:
Two ways:

1. <fstream object>.open(...) return values evaluates to false
2. <fstream object>.fail() evaluates to false (useful for when file is opened in constructor)

close file:
<fstream object>..close();
(do not think there is a need to elaborate)

input methods

File >> <value>; //reads one word at a time, does include EOL

File.getch(<char>); //reads one char at time
File.getline(char *string,int length); //reads max at least length chars

output method

File << <value>; //reads one word at a time, does include EOL

File.putch(<char>); //write one char at time
File.write(char *string,int length); //reads max at least length chars

Casting
All casts are in the form of:
*_cast<<target_type>>(<source expression>)

cast type example Description/Description

static_cast int i;
float f;
f=static_cast<float>(i);

Like a C type cast. Does bi-directional pointer
casting between base classes and derived class, but
does not do safety checks, just makes sure they are
compatible (which means incomplete types can be
casted)

const_cast const char *s1=”hello”;
char *s2;
s2=const_cast<char *>(s1);

Alters the const-ness of an expression

dynamic_cast Base *b; // non-polymorphic
Derived *d; // derived from Base

d = new Derived();
b=dynamic_cast<Base *>(b);

Only used with pointers and references to objects.
For non-polymorphic classes, can only case from
derived to base class. If the class is polymorphic, the
casting can be done in either direction, and verifies
that the resulting object will be a complete object.
Return NULL on failure.

reinterpret_cast ClassA *a;
ClassB *b; // a completely
unrelated class

b=reinterpret_cast<ClassB *>(a);

Blindly casts pointers. There is no safety checking,
so unrelated classes can be casted that will cause
runtime errors when the pointer is dereferenced.

Const Handling
Basically ‘const’ applies to whatever is on its immediate left (other than if there is nothing there in which case it applies to
whatever is its immediate right).

Example Description

const int * Constant2
int const * Constant2

Declare that Constant2 is variable pointer to a constant
integer

int * const Constant3 Declare that Constant3 is constant pointer to a variable
integer

int const * const Constant4 Declare that Constant4 is constant pointer to a constant
integer.

class A
{

int func() const;
}

Adding a const to the end of a method guarantees that no
member variables will be altered in the function call.

Templates
Mechanisms for generic types. The entire template (declaration and implementation) must be inside a header file, because it
requires a recompilation every time it is used, unlike a standard library

template < [(class | typename) identifier [= default][, [(class|typename)
identifier [= default]]*]* | [int variable[=default][,]]*> [function declaration |
class declaration]

Field Purpose Value/Description

template identifies function or class will
use a template

(class | typename) prepends the template identifier class or value can be used. they both
behave exactly the same way

identifier name which will reference the
parameter type

any valid variable name

= default if no type is given, this type will
be used

any valid type

[int variable[=default][,] non-type parameter instead of a type being set at compile,
and constant integer value can be set

[, [(class|typename) identifier[=
default type]]*]

allows multiple parameter types
in a single template declaration

Function Template
Standard function overloading applies, including overloading between template and non-template functions.

Function Template Example

template <class T> T function(T x)
{

x++;
return x;

}

int i,j;
char x,y;
i=1;
x=1;

j=function(i); // type is inferred by argument
x=function<char>(c); // type is explicitly set

Class Template

Class Template Example

template <class T1, class T2> class ClassA
{

T1 x;
T2 y;

T1 getX();
void setY(T2 inY);

};

template <class T1, class T2> T1 classA<T1,T2>::getX()
{ return x;
}

template <class T1, class T2> void classA<T1,T2>::setY(T2 inY)
{ y=inY;
}

// class must be declared with types explicitly set
ClassA<int, float> c;
int x;

x=c.getX();
c.setY(1.02);

Specialization
Allows the overriding of the default template implementation for a certain type. In a specialized template, the same
methods do not need to be implemented, each can have it's own set of methods, but specialized class will not inherit any
undefined methods from the generic template.

template <<standard template types identifier> *> class <name of class
being specialized>

template <> class <name of class being specialized> <<type>>

Field Purpose Value/Description

template identifies function or class will use a
template

<<standard template types
identifier>>

same syntax as a standard template
identifier

alias for type

<> identifies as an explicit type
specialization

<name of class being
specialized>

identifies the class being specialized any valid class name

<<type>> the type that that this template will be
specialized

any valid type

Specialization Template Example

// standard
template <class T> class ClassA
{

T x_;
void set(T x);

};

template <class T> void classA<T>::set(T x)
{ x_=x;
}

//template to handle pointer
// NOTE: T is not a pointer type. This syntax just

// allows template specialization for to handle pointers
// if they need to be handled differently
template <class T *> class ClassA
{

T x_;
void set(T *x);

};

template <class T> void classA<T>::set(T *x)
{ x_=*x;
}

//template to handle specific type
template <> class ClassA <char *>
{

char *x_;
void set(char *x);

};

void classA<char *>::set(char *x)
{
 // assuming x_ was allocated somewhere else...
 strcpy(x_,x);
}

Exceptions
Exceptions allow for runtime errors to be handled and control be based to an error handler without any explicit return value
checks for every call.

The basic setup for a exception handling is the throw-try-catch block

try
{
 [throw <object> | function with throw <object>]
}
(catch (<[...| type variable]>)
{

})+

If there is nothing catch a thrown exception, the program will abort.

Field Purpose Value/Description

try marks the beginning of the block which
will take a thrown exception and pass it
to the catch blocks

any legal code

throw object the object being thrown is what will be
caught by the catch blocks. The
throw can be explicitly in the try
block, or it can be in in any function
called within the try block

any legal object/type

catch one or more blocks to catch the thrown
exceptions.

the body of catch is any legal code

(<[...| type variable]>) each catch has a type it can catch.
The catches will try each catch in
order, trying to match the thrown type
to the catch argument ,so ideally, the
catches should be placed in order of
most specific to least specific.

“…” means it will catch any type, but
there will not be any argument
associated with it.
“ type variable” is a any legal
type and any legal variable name.

Rethrowing an exception
If a catch does not want to handle an exception or wants to have the next level also handle the exception, it can be
rethrown , simply by calling throw with no argument. The exception will be thrown down to the previous level. In this
example, the catch with the int argument in main will actually handle the exception.

Rethrowing example

int level_2()
{
 std::cout << "Level 2" << std::endl;

 throw 10;

}

int level_1()
{
 std::cout << "Level 1" << std::endl;

 try
 {

 level_2();
 }
 catch (char c)
 {
 std::cout << "L1: Error type char: " << c << std::endl;
 }
 catch (...)
 {
 throw;
 }
}

int main()
{

try
 {
 level_1();
 }
 catch (int i)
 {
 std::cout << "Main: Error type int: " << i << std::endl;
 }
 catch (char c)

 {
 std::cout << "Main: Error type default" << std::endl;
 }

}

Exception Specifier
Function specifiers specify what type of exceptions (if any) a function, or a function it calls can throw. A function without a
function specifier can throw any kind of exception.
NOTE: the exception specifier is not part of the function signature

function throw([types,]*)

Field Purpose Value/Description

function function prototype or declaration any valid function

throw signifies an exception specifier

[types,]* list of 0 or more types of exceptions
that can be thrown. If 0 types are
listed, then the function will not throw
any exceptions.

any valid type

Standard Exceptions
There are some standard exception classes which are used by the C++ Standard Library. They are derived from the
exception base class.

Exception Class Description

bad_alloc thrown by the new operator when storage space can not be
allocated

bad_cast thrown by dynamic_cast when the casted object would be

incomplete

bad_exception thrown when a function throws an exception that violates
the exception specifier

bad_typeid thrown when typeid is given a NULL pointer value

logic_error (and it's derived classes) thrown when a logic error occurs which could be detected
by reading the code.

runtime_error (and it's derived classes) thrown when a error occurs that could not have been
detected by reading the code,.

ios_base::failure base class for iostream classes

License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States
License.

Document Changes

Date Version Name Change

07/28/09 0.01 Adam Grossman <adamtg@metashadow.com> Initial Release

07/30/09 0.02 Adam Grossman <adamtg@metashadow.com> Added in:
Version # in title
I/O
operator overloading
const's
casting
TBD section

07/30/09 0.03 Adam Grossman <adamtg@metashadow.com> Added In:
Filled in constructor information

08/05/09 0.04 Adam Grossman <adamtg@metashadow.com> Fixed:
errors in cast code samples

10/13/09 0.05 Adam Grossman <adamtg@metashadow.com> Added in:
templates
Changed formating of code frames

10/21/09 0.9 Adam Grossman <adamtg@metashadow.com> Finished:
Templates
Added in:
Exceptions

This will be the first official “beta” release

10/21/09 0.91 Adam Grossman <adamtg@metashadow.com> Added license

mailto:ag@metashadow.com
mailto:ag@metashadow.com
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
mailto:ag@metashadow.com
mailto:ag@metashadow.com
mailto:ag@metashadow.com
mailto:ag@metashadow.com
mailto:ag@metashadow.com

